

Исследование химии поверхности ультрадисперсного алмаза методом газовой хроматографии

Белякова Л.Д., Ларионов О.Г., Паркаева С.А., Спицын Б.В.

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва

Буланова А.В.

Самарский государственный университет, Самара

Аннотация

Газохроматографическим методом изучены образцы ультрадисперсного алмаза: УДА-СП, УДА-СП-H₂, УДА-СП-CCl₄, полученные детонационным синтезом с последующей обработкой различными модификаторами. Измерены времена удерживания 11 тестовых веществ в интервале температур от 393 до 493 К. Рассчитаны удельные удерживаемые объемы, дифференциальные теплоты адсорбции при постоянном объеме и дифференциальные мольные энтропии адсорбции, а также определены вклады дисперсионного и специфического взаимодействия в общую энергию адсорбции

Введение

Ультрадисперсный алмаз (УДА) представляет собой частицы, имеющие размеры до 10 нм (средний размер 4.2 нм). Исследования последнего времени показали, что УДА можно получать с заданными свойствами и успешно применять в качестве сорбентов, катализаторов, лекарственных препаратов.

Свойства УДА существенным образом зависят от метода получения. Основным методом производства синтетического алмаза и алмазных порошков остается фазовое превращение графита в алмаз при температурах до 1600°С, давлениях около 6 ГПа в присутствие катализаторов, HPHT(high pressure high temperature) - метод. Альтернативными методами получения синтетических алмазов являются детонационный синтез из взрывчатых веществ (ультрадисперсные алмазы) и химическое осаждение из паровой (газовой) фазы, CVD (chemical vapor deposition) - метод [1].

Исследованный в работе УДА, получен путем химических превращений на фронте детонационной волны при взрыве мощных ВВ (смесь тротила и гексогена) [1,2]. В газах, образующихся при детонации ряда взрывчатых веществ, содержится значительное количество свободного углерода, из которого в условиях высоких температуры и давлений, достигаемых при взрыве, формируется алмазная фаза углерода. Время образования алмазной фазы составляет порядка 1 микросекунды, выход алмазного продукта при этом составляет 4-10 % от массы взрывчатого вещества, диаметр основной совокупности частиц 2-20 нм, плотность 3000-3100 кг/м³. Параметр кристаллической решетки α =0.356 нм.

Элементный состав: С – (81-87); N –(1.9-2.5); Н – (0.1-1.2); О – (9-15) масс.%, соответственно. Параметры кристаллической решетки получаемого алмазного порошка совпадают с характеристиками для природных алмазов.

Вследствие особенностей проведения синтеза образцы УДА имеют специфический набор примесей. Кроме фазы алмаза, вместе с неалмазным углеродом они содержат неуглеродные примеси в виде оксидов и карбидов железа и других металлов, а также могут содержать значительные количества химически связанных кислорода, водорода и азота. В основном последние элементы входят в состав молекул и радикалов, находящихся в форме функциональных поверхностных групп на доступной поверхности наноалмаза или оставшихся в «захлопнутых» порах. Вследствие этого их удаление представляет значительные трудности. Химический состав наноалмазов детонационного синтеза приведен в табл. 1 [3].

Элемент и его содержание, %(масс.)	Химическая форма элемента	Характеристика примеси	
С _{общ} - 80-88	Алмазный С (90-97%), Неалмазный С (3-10%)	Трудноудаляемый неалмазный углерод	
O – 10; H – 0.5 –1.0; N – 2- 3	Адсорбированные газы, вода, кислоты	Трудноудаляемые летучие вещества	
Fe, Ti, Cr, Cu, K, Ca, Si, Zn, Pb и др. – 0.5 – 8.0	Соли, оксиды, карбиды	Трудноудаляемые твердые вещества	

Таблица 1. Химический состав исследуемых наноалмазов

Первичные кластеры наноалмаза имеют узкое (от 2 до 10 нм) распределение по размерам и сложное строение [4]. Это обстоятельство особенно привлекательно с точки зрения применимости кластеров наноалмаза как модельного материала при исследовании наноразмерных эффектов. Форма кластера определяется условиями синтеза [5].

В настоящее время наиболее признана следующая модель первичного кластера наноалмаза: внутри алмазное ядро, затем нарушенная углеродная оболочка и далее поверхностная оболочка из функциональных групп [6].

Скорость образования наноалмаза очень велика, и стабилизация частиц происходит за счет образования одной или двух связей поверхностных атомов с другими элементами водородом, азотом, кислородом. Поэтому относительное содержание функциональных групп в наноалмазе высоко, и природа поверхностных групп будет определять химическое состояние поверхности НА, а, следовательно, и многие его свойства.

ИК-спектроскопии, термогравиметрии, рентгенофотоэлектронной Методами спектроскопии и другими на поверхности алмаза были идентифицированы различные функциональные группы [7 - 9].

Помимо указанных углеводородных, галоидных и кислородсодержащих групп, синтезированный наноалмаз в зависимости от условий его обработки, на своей поверхности могут содержать азотсодержащие (аминные, амидные, циано- и нитрогруппы), сульфоновые и др. группы [10].

Наличие большого количества функциональных поверхностных групп приводит к тому, что наноразмерные алмазы склонны к агрегации с образованием более прочных первичных и менее прочных вторичных [11,12] структур. Вследствие агломерации могут образоваться частицы размером до нескольких микрометров [10].

Таким образом, очевидно, что наноалмаз не является чисто углеродным материалом, к тому же сам углерод находится в нем одновременно в нескольких модификациях, и только одна из них соответствует структуре алмаза. Именно поэтому наноалмаз представляет собой особый тип алмазного материала, свойства которого в наибольшей степени определяются химическим состоянием его поверхности [13].

Целью настоящего исследования явилось изучение методом газовой хроматографии химии поверхности ультрадисперсных алмазов марок УДА-СП, УДА-СП-H₂, УДА-СП-CCl₄. Выбор метода обусловлен уникальными особенностями метода хроматографии – корректное изучение межмолекулярных взаимодействий в области практически бесконечного разбавления, возможность использования малых количеств веществ для исследования, прецизионность [14,15]. В работах [16-18] методом газовой и жидкостной хроматографии изучены образцы УДА других марок.

Эксперимент

Хроматографические исследования проводили на газовом хроматографе 3700 с пламенно-ионизационным детектором. Использовали колонку 25 см, с внутренним диаметром – 3 мм. Колонки были заполнены твердым носителем CHROMATON-N-AW-DMCS с иммобилизованными частицами УДА.

В работе изучали образцы наноалмаза, полученные детонационным методом: УДА-СП – первичный продукт детонационного синтеза; УДА-СП-H₂ – исходный образец обработан водородом при 850° в течение 1 часа; УДА-СП-ССl₄ – первичный продукт синтеза предварительно отмыт в азотной кислоте для удаления примесей металлов, обработан затем ССl₄ в аргоне в течение 1 часа при 500°С.

В качестве газа-носителя использовали азот особой чистоты. Скорость газа-носителя – 20-30 мл/мин. Адсорбаты дозировали микрошприцом, пробы разбавляли воздухом до достижения предела чувствительности прибора. Температуру колонок поддерживали с точностью ± 0.1 К. Все опыты проводили при избыточном давлении 9.81 кПа газа-носителя на входе в колонку.

Колонки с исследуемыми образцами перед газохроматографическими опытами прогревали в токе газа-носителя – азота при 473 К в течение 6 часов. Для всех образцов наблюдали постоянство ионизационного тока детектора после прогрева при 473 К. Эксперимент проводили в интервале температур 393-473 К.

В качестве тестовых веществ выбраны соединения особой чистоты, способные проявлять различные типы взаимодействий: нормальные алканы ($C_6 - C_9$) – дисперсионные взаимодействия, бензол – взаимодействие по π -связи, спирты – водородные связи, ацетонитрил, нитрометан и ацетон – донорно-акцепторные, диэтиловый эфир – взаимодействия по эфирной группе. При хроматографировании веществ, способных к специфическим взаимодействиям, пики не всегда были симметричными. В этих случаях времена удерживания определяли как по максимуму, так и по медиане пика. Времена удерживания t_R для таких соединений, рассчитанные по медианам, имеют несколько большие значения, чем определенные по вершинам пиков.

При достаточно высоких температурах колонки и малых пробах изотерма адсорбции подчиняется закону Генри [19]. По данным исправленных времен удерживания адсорбатов t_R при разных температурах для исследованных адсорбентов рассчитаны с использованием программы ThermoChrom удельные удерживаемые объемы V_{g,1} и термодинамические характеристики адсорбции (TXA), а именно изменение дифференциальной мольной внутренней энергии адсорбции $-\Delta \overline{U}_1$, равное дифференциальной теплоте адсорбции при постоянном объеме \overline{Q}_1 , и изменение стандартной дифференциальной мольной энтропии адсорбции $-\Delta \overline{S}_1^{\circ}$ [19, 16]. Для специфически сорбирующихся веществ определяли вклад энергии специфического взаимодействия $\Delta \overline{Q}_1$, спец. в общую энергию адсорбции, который оценивали по разности \overline{Q}_1 данного вещества и неспецифически сорбирующегося нормального алкана с тем же значением поляризуемости α :

 $\Delta \overline{Q}_1$, спец. = $\overline{Q}_1 - \overline{Q}_1$ (н-алкана), КДж/моль.

Проводили статистическую обработку полученных данных.

Обсуждение результатов

Изучение поверхностных свойств исследуемых УДА основывалось на оценке их способности вступать в различные виды взаимодействия с тестовыми соединениями. Определяющими параметрами при этом являются физико-химические свойства как самих УДА, так и тестовых сорбатов. В табл. 2 приведены физико-химические характеристики последних.

Таблица 2. Физико-химические характеристики тестовых соединений

(М – молекуляная масса; α – поляризуемость, А³; μ – дипольный момент, D; DN, ккал/моль – электронодонорные энергетические характеристики молекул, ккал/моль; AN, ккал/моль – электроноакцепторные энергетические характеристики молекул, ккал/моль[20, 21])

Тестовое	М	a		DN	AN
соединение	141	ů	μ	DIN	
$H-C_6H_{14}$	86,2	11,8	0	0	0
<i>н</i> -С ₇ Н ₁₆	100	13,6	0	0	0
<i>н</i> -С ₈ Н ₁₈	114	15,4	0	0	0
<i>н</i> -С ₉ Н ₂₀	128	17,2	0	0	0
C_6H_6	78,1	10,6	0	0,1	8,2
CH ₃ NO ₂	61	6,0	3,54	2,7	20,5
CH ₃ CN	41,1	5,4	3,94	14,1	18,9
$(CH_3)_2CO$	58,1	6,4	2,85	17,0	12,5
CH ₃ OH	32,1	3,4	1,7	20	41,3
C ₂ H ₅ OH	46,1	5,1	1,68	20	37,1

На рис.1 приведены величины удельных удерживаемых объемов V_{g,1} (см³/г) некоторых тестовых соединений при 453 К для исследованных образцов.

Рис. 1. Величины удельных удерживаемых объемов $V_{g,1}$ (см³/г) некоторых тестсоединений при 453 К для образцов: 1 - УДА-СП, 2 – УДА-СП-H₂, 3 – УДА-СП-ССl₄

Данная гистограмма наглядно показывает, что V_{g,1} всех исследованных соединений и ответственных за дисперсионное взаимодействие и за специфические взаимодействия

зависят от способа модифицирования наноалмаза. Можно отметить большие удерживаемые объемы $V_{g,1}$ н-октана и метанола для образца УДА-СП-H₂. Наименьшие величины удельных удерживаемых объемов всех адсорбатов, кроме метанола, наблюдаются для образца УДА-СП-CCl₄.

В табл. 3 представлены значения ТХА адсорбированных молекул на исследованных образцах УДА.

Таблица 3. Значения теплот	адсорбции (Q_1) и энтропии ($-\Delta S_1^\circ$) тестовых	адсорбатов н	на
исследованных адсорбентах				

	УДА	-СП	УДА-(СП-Н ₂	УДА-СП-ССl4	
Адсорбаты	\overline{Q}_1 ,	- $\Delta \overline{S}_{l}^{\circ}$,	\overline{Q}_1 ,	- $\Delta \overline{S}_{1}^{\circ}$,	\overline{Q}_1 ,	- $\Delta \overline{S}_{1}^{\circ}$,
н-С ₆ Н ₁₄	25	26	49	71	49	81
н-С ₇ Н ₁₆	46	63	60	83	56	91
н-С ₈ Н ₁₈	63	90	68	89	61	94
н-С ₉ Н ₂₀	90	139	78	103	70	107
C_6H_6	38	45	58	82	45	66
CH ₃ CN	43	75	35	36	35	39
$(CH_3)_2CO$	38	32	46	61	28	24
CH ₃ OH	26	15	25	25	21	-
C ₂ H ₅ OH	30	20	36	35	-	-
CH ₃ NO ₂	62	86	38	36	37	48
$(C_2H_5)_2O$	31	30	-	-	39	56

Рис. 3. Зависимость теплоты адсорбции \overline{Q}_1 н-углеводородов C₆-C₉ от их поляризуемости α на образцах: 1 – УДА-СП, 2 – УДА-СП-H₂, 3 – УДА-СП-CCl₄

На рис. З проведено сравнение зависимостей дифференциальной теплоты адсорбции \overline{Q}_1 н-углеводородов от их поляризуемости для исследованных образцов. Как видно, для исходного образца УДА-СП зависимость сильно отличается от зависимости для модифицированных образцов. Зависимость для УДА-СП ближе к зависимости на активированных углях [22,23], что связано с наличием на его поверхности довольно толстого слоя аморфного углерода. На модифицированных образцах найденные зависимости ближе к зависимости на неспецифическом однородном непористом адсорбенте – графитированной термической саже (ГТС) [19]. Модифицирование наноалмаза в значительной степени удаляет аморфный углерод. Теплоты адсорбции *н*-углеводородов на модифицированных УДА

несколько превышают измеренные на ГТС [19], что указывают на большую шероховатость поверхности этих образцов по сравненению с поверхностью ГТС.

Для расчета вкладов дисперсионного и специфического взаимодействий в общую энергию адсорбции по данным табл. 3, построены графики зависимости дифференциальной теплоты адсорбции \overline{Q}_1 от поляризуемости α тестовых веществ (рис. 4-6).

Рис. 4. Зависимость теплоты адсорбции \overline{Q}_1 от поляризуемости адсорбируемых молекул на образце УДА-СП: 1-3 – н-алканы $C_6 - C_8$, 4 – бензол, 5 – этанол, 6 – ацетонитрил, 7 – ацетон

Рис. 5. Зависимость теплоты адсорбции \overline{Q}_1 от поляризуемости адсорбируемых молекул на образце УДА-СП-Н₂: 1-4 – н-алканы C₆-C₉, 5 – метанол, 6 – этанол, 7 – ацетонитрил, 8 – нитрометан, 9 – ацетон

Рис. 6. Зависимость теплоты адсорбции \overline{Q}_1 от поляризуемости α адсобируемых молекул на образце УДА-СП-ССІ₄ : 1–4 – н-алканы C₆-C₉, 5 – метанол, 6 – ацетонитрил, 7 – нитрометан, 8 – ацетон, 9 – диэтиловый эфир

Как видно из табл. 3 и рис. 3-6, для УДА-СП, в отличие от его модифицированных образцов, в ряду н-углеводородов ТХА резко возрастают с увеличением числа атомов углерода. Из рисунков также видно, что наблюдается линейная зависимость теплот адсорбции нормальных углеводородов от поляризуемости, при этом вклады энергии адсорбции, приходящиеся на CH₂-группу ($\Delta \overline{Q}_{1, CH2}$), составляют для УДА-СП около 20 кДж/моль, для CП-УДА-H₂ – около 10 кДж/моль, для УДА-СП-CCl₄ – около 6 кДж/моль. Значения $\Delta \overline{Q}_{1, CH2}$ около 20 кДж/моль характерны для активированных углей [22,23], что также указывает на наличие в УДА-СП участков неалмазного графита, содержащих микропоры. Высокие значения теплот адсорбции полярных веществ указывают на наличие в образце УДА-СП большого количества функциональных групп.

Из графиков зависимости Q_1 от поляризуемости тестовых веществ на исследованных образцах рассчитаны вклады специфического взаимодействия некоторых молекул. Результаты расчета для УДА-СП-H₂ и УДА-СП-CCl₄ приведены в табл. 4 и 5.

Адсорбат	DN/AN	$\overline{\mathrm{Q}}_{1}$, кДж/моль	$\Delta \overline{Q}_1$,спец.	$\Delta \overline{\mathrm{Q}}_{1\text{,cneul}}/\overline{\mathrm{Q}}_{1\text{,}}\%$
н-С ₆ Н ₁₄	0	50	0	0
н-С ₇ Н ₁₆	0	59	0	0
н-C ₈ H ₁₈	0	67	0	0
CH ₃ CN	14/19	35	17	48
$(CH_3)_2CO$	17/12	45	22	48
CH ₃ NO ₂	3/20	38	17	45
CH ₃ OH	20/41	25	17	70
C ₂ H ₅ OH	20/37	35	18	53

Таблица 4. Вклады специфического взаимодействия некоторых молекул на УДА-СП-Н₂

Как видно из данных табл. 4, для УДА-СП-Н₂ наблюдается большой вклад специфических взаимодействий в общую энергию адсорбции, особенно для спиртов. Это объясняется наличием в образце УДА гидроксильных групп, которые образовались вследствие высокотемпературной водородной обработки ультрадисперсного алмаза, полученного детонационным синтезом [24].

Для УДА-СП-ССІ₄ вклад специфического взаимодействия составляет всего 10-35 % от общей энергии взаимодействия. Для ацетонитрила и нитрометана имеет место большое значение электроноакцепторной энергетической константы. Для этих молекул вклад

специфических взаимодействий составляет 30 – 35 %, что указывает на наличие в модифицированном CCl₄ образце донорных групп.

Адсорбат	DN/AN	$\overline{\mathrm{Q}}_{1}$, кДж/моль	$\Delta \overline{Q}_{1}$,спец.	$\Delta \overline{Q}_{1,cneu}/\overline{Q}_{1}$, %
н-С ₆ Н ₁₄	0	49	0	0
н-С7Н16	0	56	0	0
н-С ₈ Н ₁₈	0	61	0	0
CH ₃ CN	14/19	35	11	31
$(CH_3)_2CO$	17/12	30	3	10
$(C_2H_5)_2O$	19/4	41	4	10
CH ₃ NO ₂	3/20	40	14	35
CH ₃ OH	20/41	21	6	25

Таблица 5. Вклады специфического взаимодействия некоторых молекул на УДА-СП-ССІ₄

Заключение

Таким образом, исследования показали, что ультрадисперсный алмаз УДА-СП, а также УДА-СП-H₂, УДА–СП-CCl₄, по-разному обработанные после взрыва, имеют различную химическую природу поверхности. Так, образец УДА-СП имеет на наноалмазных частицах большой слой пористого графита. Образец УДА-СП-H₂ наряду с неполярными участками на поверхности наночастиц имеет и значительное количество гидроксильных групп. Наиболее однородной поверхностью из исследованных образцов обладает образец УДА–СП-CCl₄, для которого вклад энергии специфического взаимодействия в общую энергию не велик.

В дальнейшем планируется на основе полученных данных провести теоретические расчеты по определению вклада в общую энергию адсорбции не только дисперсионных и специфических взаимодействий, но также ориентационных и индукционных, электроноакцепторных и электронодонорных вкладов по уравнению, предложенному в работе [25].

Авторы признательны за предоставление исходных образцов наноалмаза А.П. Корженевскому и Ф.Н. Олесику, а также С.А. Денисову и А.Г. Чопиевой - за его модифицирование.

Список литературы

1. Спицын Б.В., Алексенко А.Е. Развитие работ по химической кристаллизации алмаза в ИФХ РАН. Сб. Современные проблемы физической химии. Изд-во "Граница". 2005. С. 350-368.

2. Алесковский В.Б. Химия надмолекулярных соединений. Санкт-Петербург.: изд-во ЛГУ. – 1996. - 256 с.

3. Авгуль Н.Н., Киселев А.В., Пошкус Д.П. Адсорбция газов и паров на однородных поверхностях. М.: Химия. – 1975. – 265 с.

4. Åleksenskii A.E., Baidakova M.V., Vul' A. Ya. e.a. // Phys. Solid State. - 1999. - V. 41. - P. 668-672.

5. A.Ya. Vul'. Proc. Of NATO Advanced Research Workshop «Innovative superhard materials and sustainable coating». Kyiv (Ukraine): mai 12-15. – 2004. – 29 p.

6. Долматов В.Ю., Сущев В.Г., Веретенникова М.В. Сверхтвердые материалы. – 2004. – № 1. – С. 23-29.

7. Shergold H.L., Hartley C.J. The surface chemistry of diamond. // Int. J. Miner. Process. – 1982. – V. 9. – №3. – P. 219-233.

8. Vidali G., Cole M.W., Weinberg W.H., Stcele W.H. Helium as a probe of the $\{111\}$ surface of diamond // Phys. Pev. Lett. – 1983. – V.51. – No. – P. 118-121.

9. Shergold H.L., Hartley C.J. The surface chemistry of diamond. // Int. J. Miner. Process. – 1982. – V.9. – №3. – P. 219-233.

10. Кулакова И.И. Химия поверхности наноалмазов. // Физика твердого тела. – 2004. – Т. 46. – Вып. 4. – С. 621-628.

11. Сакович Г.В., Брыляков П.М., Губаревич В.Д. и др. // ВХО им. Д.И. Менделеева. – 1990. – Т. 35. – № 5. – С. 600-602.

12. Кулакова И.И., Тарасевич Б.Н., Руденко А.П. и др. // Вестн. Моск. Ун-та. Сер. 2. Химия. – 1993. – Т. 34. - № 5. - С.506-510.

13. Гусев А.И. Успехи физ. наук, 1998, т. 168, 1, с. 55-83.

14. Ларионов О. Г., Белякова Л. Д., Буряк А. Н., Татаурова О.Г. Применение и перспективы использования хроматографии в физико-химических исследованиях / Сб. 100 лет хроматографии. М.: Наука. -2003. - С. 439-477.

15. Белякова Л.Д., Буряк А.К., Ларионов О.Г. Применение хроматографии в физикохимических исследованиях / Сб. "Современные проблемы физической химии". М.: "Граница". - 2005. -С. 264 -287.

16. Белякова Л.Д., Кудинова А.Н., Ларионова А.О., Ларионов О.Г., Спицын Б.В. Исследование поверхностных свойств ультрадисперсного алмаза методом газовой хроматографии // Журн. физ. химии. – 2008. – Т.82. – №3.

17. Карпец А.В., Ларионов О.Г., Корольков В.В., Кочетова М.В., Кулакова И.И., Лисичкин Г.В. Исследование сорбционных и хроматографических свойств модифицированного пористого диспесного алмаза. Тезисы Всерос-о симпозиума "Хроматография в химическом анализе и физико-химических исследованиях". Москва. – 2007. – С.50.

18. Нестеренко П. Н., Федянина О. Н. Адсорбционные и хроматографические свойства мелкодисперсного синтетического алмаза. Тезисы Х Межд. конф «Теоретические проблемы химии поверхности, адсорбции и хроматографии». Москва. - 2006. - С. 264.

19. Киселев А.В., Яшин Я.И. Газо-адсорбционная хроматография. М.: Наука. – 1967. – 256 с.

20. Gutmann V. Empirical parameters for donor and acceptor properties of solvents // Electrochemica Acta. -1976. - V. 21. - P. 661-670.

21. Самадани Лангеруни Наргез. Адсорбционные и каталитические свойства оксидов кремния, алюминия и циркония, модифицированных соединениями железа. Канд. дис. Химич. фак-т МГУ им. М.В. Ломоносова. 2007 г. с.

22. Белякова Л.Д., Волощук А.М., Воробьева Л.М., Ларионова А.О., Ларионов О.Г. Влияние пористой структуры углеродных адсорбентов на хроматографическое удерживание адсорбатов различной природы // Журн. физ. химии. – 1995. – Т.69. – №3. – С.501-505.

23. Бардина И.А., Ковалева Н.В., Никитин Ю.С. Хроматографическое удерживание и термодинамические характеристики адсорбции ряда органических соединений в области Генри на активном угле // Журн. физ. химии. - 2004. - Т.78. - №6. - С.1119-1123.

24. Денисов С.А., Чопурова А.Г., Спицын Б. В. Воздействие газовой обработки на поверхностные свойства наноалмаза // Успехи в химии и химической технологии. -2007. – Т.ХХІ. - № 8 (76). – С.67-71.

25. Larionov O.G., Petrenko V.V., Platonova N.P. Determination of sorbent polarity and selectivity by linear regression of retention indices // J. Chromatogr. – 1991. – V. 552. – P. 31-41.

Работа выполнена при частичной поддержке РФФИ (номер проекта 06-08-01014-а) и программы фундаментальных исследований ОХНМ РАН 4.2 2007 г.