

Модель кинетики массопереноса для сорбционной микросистемы, используемой в рентгенофлуоресцентном анализаторе с предварительным концентрированием

Груздева А.Н., Хамизов Р.Х

Институт геохимии и аналитической химии им. В. И. Вернадского РАН, Москва

Токмачев М.Г., Тихонов Н.А

Московский государственный университет им. М.В. Ломоносова, Москва

Аннотация

В статье дано описание кинетики массопереноса в сорбционной микросистеме (сорбционном сенсоре), использование которой позволяет на несколько порядков снизить пределы обнаружения элементов при рентгенофлуоресцентном анализе (РФА). Приведена упрощенная модель кинетики, удовлетворительно описывающая экспериментальные результаты

Введение

За последнее десятилетие создано новое поколение высокочувствительных малогабаритных рентгеновских аналитических инструментов (диффрактометров, флуоресцентных анализаторов и других приборов), в которых основным элементом является поликапиллярная оптика (или поликапиллярная линза) [1]. С помощью фокусировки рентгеновского излучения от весьма слабых источников мощностью несколько десятков ватт можно достигать плотности рентгеновского пучка до 10¹² фотонов/с/мм².

Основная идея данной работы состоит в возможности дальнейшего повышения чувствительности приборов для анализа растворов за счет сочетания рентгеновской оптики с сорбционными накопительными микросистемами. В этом отношении наиболее актуальна обнаружения задача повышения пределов при энерго-дисперсионном рентгенофлуоресцентном анализе (ЭДРФА). Преимуществом метода является возможность одновременного определения большого количества элементов. Однако приборы ЭДРФА в стандартном исполнении не позволяют обнаруживать элементы с концентрациями ниже десятков мг/л [1]. В то же время, современные нормативы в области охраны окружающей среды, а также требования, предъявляемые к аналитическому обеспечению многих технологических процессов, ставят задачу создания широкодоступных инструментов с существенно более низкими пределами обнаружения. Поэтому сочетание рентгенофлуоресцентного анализа и предварительного концентрирования определяемых элементов с помощью сорбционных микросистем, устанавливаемых в анализируемые потоки, представляется перспективным подходом для решения указанной проблемы [1].

Эксперимент

Для создания накопительных сорбционных микросистем нами были использованы стеклянные многоканальные поликапиллярные структуры со сквозными капиллярами, разработанные в Институте рентгеновской оптики и изготавливаемые по технологии, описанной в патентах [2,3]. Каждый из сотен тысяч или миллионов микроканалов поликапиллярных столбиков или пластин содержит одну микрогранулу сорбента с радиусом в несколько микрон. Микрогранулы сосредоточены в одном из торцов поликапиллярной трубки и образуют активный сорбционный слой. Металлы, сорбированные в активном слое, под действием рентгеновского излучения дают спектр флюоресценции. В этом смысле, сорбционная система может рассматриваться как химический (сорбционный) сенсор, а при использовании нескольких типов сорбентов - как химический чип. Разработана простая методика получения сорбционных микросистем, их описание и микрофотографии приведены в работе[4]. В качестве сорбентов для изготовления флуоресцентных накопительных сенсоров использовали сильнокислотные сульфокатиониты КУ-2 на основе сополимера стирола и дивинилбензола, слабокислотные карбоксильные катиониты КБ-4 на метилметакрилатной основе, молекулярные сорбенты "Полиогрс" [5], содержащие комплексообразующие оксимные группы, а также сорбент ДЭТАТА, содержащий диэтилентриаминтетраацетатные группировки [6].

Лабораторный ренгенофлуоресцентный анализатор был описан в работе [4]. Прибор состоит из двух блоков: накопительного и измерительного. В накопительном блоке анализируемый раствор с помощью насоса в течение определенного времени прокачивали через проточную систему, в которой были установлены сорбционный сенсор, обращенный активным слоем к потоку, а также ультразвуковой активатор, отделенный внешним потоком от активного сорбционного слоя. После накопления компонентов в течение заданного времени сенсор промывали деионизованной водой и переносили в измерительный блок, в котором на сорбционный слой воздействовали сфокусированным или квазипараллельным рентгеновским излучением. Вторичное (флуоресцентное) излучение регистрировали с помощью полупроводникового детектора. Кинетические кривые сорбции строили по измерениям площадей резонансных пиков элементов в спектрах флуоресценции, полученных для разных значений времени сорбционного накопления.

Результаты и их обсуждение

Для выбора рациональных условий использования сорбционных накопительных микросистем необходимо изучить закономерности кинетики массообмена в системах, включающих микрогранулы сорбента в виде иммобилизованного активного слоя, контактирующего с потоком анализируемого раствора, содержащего определяемые компоненты.

Рассмотрим схему одной из множества одинаковых, параллельно расположенных элементарных ячеек химического сенсорах [4], представляющей собой перевернутый «микроколодец» с раствором, в котором свободно перемещается гранула сорбента и который закрыт с одной стороны проницаемой для раствора сеткой (рис.1А). Пусть толщина сетки будет h, а высота ячейки H.

По сделанным нами ранее [4] оценкам характерных времен отдельных стадий процесса сорбции микрокомпонентов сорбционной микросистемой, лимитирующими

стадиями кинетики массообмена являются внешний массоперенос через сетку и диффузия во внутреннем растворе единичной ячейки.

Для простоты теоретического описания перестроим единичную ячейку как показано на Рис.1Б, с указанными характерными геометрическими размерами. Пусть на продольной координате x, x = 0 соответствует границе внешнего потока раствора и сетки, а $x = x_0$ - границе между внутренним раствором и сорбционным слоем, представляемым в виде цилиндрической таблетки, объем (емкость) которой выбран равным объему первоначальной сферической гранулы. Введем понятие эффективного коэффициента диффузии в жидкой среде (до границы с сорбентом) D^* как усредненное значение коэффициентов диффузии в сетке и капилляре.

Рис. 1. Схема единичной ячейки сорбционной микросистемы

Для описания кинетики сорбции металлов используем модель, аналогичную модели теплопроводности для конечного стержня с источником тепла (в нашем случае вещества) на одном конце и поглотителем (сорбентом) на другом.

$$\frac{\partial c_i}{\partial t} = D^* \frac{\partial^2 c_i}{\partial x^2} \tag{1}$$

Граничные условия могут быть записаны следующим образом:

$$\left. \begin{array}{c} c_i \right|_{x=0} = c_{i,0} \tag{2}$$

$$\left. \frac{\partial c_i}{\partial t} \right|_{x=x_0} = \gamma \frac{\partial c_i}{\partial x} \tag{3}$$

Начальные условия:

$$c_i\big|_{t=0} = c_{i,0}\delta(x=0)$$
Вдесь
(4)

$$\gamma = \frac{D}{r\Gamma} \tag{5}$$

$$\Gamma_i = \frac{\overline{c}_i}{c_{i,e}} \tag{6}$$

$$\delta = \begin{cases} c_0 & npu \quad x = 0\\ 0 & npu \quad x > 0 \end{cases}$$
(7)

 c_i - концентрация компонента во внутреннем растворе в микроячейке, \bar{c}_i - усредненная концентрация в сорбенте, c_0 - исходная концентрация во внешнем проточном растворе, $c_{i,b}$ - концентрация компонента во внутреннем растворе на границе с сорбентом, x - продольная координата по пространству вдоль микроячейки, x_0 - высота микроячейки до границы с сорбентом, t - время, D^* - эффективный коэффициент диффузии в жидкой среде, D - коэффициент диффузии в жидкой среде, D - коэффициент диффузии в жидкости, Γ_i - коэффициент массопереноса из раствора в сорбент.

На рис.2. представлены типичные экспериментальные результаты, в данном случае, набор кинетических кривых сорбции никеля на сорбенте ДЭТАТА для растворов с различным содержанием целевого компонента. Кривые были получены из анализа спектров рентгеновской флуоресценции и приведены в соответствующих координатах, измеряемых на приборе: число импульсов - время.

Рис. 2. Зависимость интенсивности флуоресценции от никеля от времени накопления (кинетические кривые сорбции). Сорбент – ДЕТАТА, фон – вода Московского водопровода

В разработанной программе для решения данной задачи в графическом виде отслеживается изменение концентрации микрокомпонента в растворе на границе с сорбентом. На основании полученных ранее оценок характерных времен отдельных стадий процесса сорбции микрокомпонентов считаем, что усреднение концентрации в сорбенте наступает практически мгновенно.

Для сравнения теоретических кривых с экспериментальными необходимо приведение их к единому виду, так как в эксперименте определялись не концентрации компонентов растворе на границе с сорбентом, а интенсивность рентгеновской флуоресценции сорбированных компонентов.

Площадь пика компонента на РФА-спектре может быть выражена следующим образом:

$$I_i(t) = \alpha \Gamma_i c_{i,b} m - A_i, \qquad (8)$$

Груздева и др. / Сорбционные и хроматографические процессы. 2008. Т.8. Вып.2

где I_i - интенсивность рентгеновской флуоресценции, площадь пика в импульсах, α - коэффициент перевода количества вещества в площадь спектра РФ, m - масса сорбента, A_i - предел обнаружения i-того элемента.

Соответственно, интересующий нас параметр $c_{i,b}$ находится по следующей формуле:

$$c_{i,b} = \frac{I_i(t) + A_i}{\alpha \Gamma_i m} \tag{9}$$

Параметры модели первого типа, зависящие от природы определяемого компонента: эффективный коэффициент диффузии в жидкой среде (D^*) , коэффициент диффузии в жидкости (D),коэффициент распределения на границе раствор-сорбент (Γ_i) и предел обнаружения i-того элемента (A). Параметры второго типа, постоянные для прибора и сорбционной микросистемы: высота ячейки (x_0) ,масса сорбента (m),радиус зерна сорбента (r).

На Рис.3, 4 приведены примеры теоретических и экспериментальных кинетических кривых в новых координатах для определенного набора параметров модели, обеспечивающих наибольшую сходимость. Критерием правильности модели служили:

- возможность описания кинетики при одном и том же наборе параметров первого типа для данного компонента и одном и том же параметре второго типа для всех определяемых элементов;

- физическая достоверность параметров модели, получаемых методом решения обратной задачи, т.е. их близость значений расчетных параметров к значениям, которые могут быть найдены независимыми методами, например Γ, D , или значениям, которые заранее известны, например, постоянные прибора и сорбционной микросистемы.

Первое условие, по сути, означает, что обратная задача может быть решена для части экспериментальных данных, полученных при одних исходных концентрациях микрокомпонентов, а найденные при этом параметры могут быть использованы для прямого теоретического расчета кинетических кривых для других концентраций.

Экспериментальный массив для анализа кинетики сорбции меди и никеля составлял 40 спектров флуоресценции для разных значений времени сорбционного накопления из растворов, содержащих оба целевых компонента. С использованием указанных спектров было построено 16 экспериментальных кинетических кривых, аналогичных приведенным на Puc.2.

Груздева и др. / Сорбционные и хроматографические процессы. 2008. Т.8. Вып.2

Рис. 3 Теоретические (линии) и экспериментальные (точки) кинетические зависимости для разных концентраций меди в исходном растворе: А - 0,5 мг/л, Б - 1,6 мг/л; В - 2 мг/л

Рис. 4 Теоретические (линии) и экспериментальные (точки) кинетические зависимости для разных концентраций никеля в исходном растворе: А - 0,5 мг/л, Б - 1,6 мг/л; В - 2 мг/л

Параметры модели, найденные методом решения обратной задачи и использованные для дальнейшего расчета кинетических кривых:

Для Си:

 $\Gamma = 3,2^{*}10^{2}$ мл/г, $D = 1,8^{*}10^{-5}$ см²/с, $D^{*} = 3^{*}10^{-6}$ см²/с, A = 52 импульса; Для Ni: $\Gamma = 2,7^{*}10^{2}$ мл/г, $D = 1,6^{*}10^{-5}$ см²/с, $D^{*} = 3^{*}10^{-6}$ см²/с, A = 52 импульса

Параметры, постоянные для прибора и сорбционной микросистемы:

 $m = 1,6^{*}10^{-2}$ г, $\alpha = 0,5^{*}10^{7}$ импульс/моль, $x_0 = 0,1$ см, $r = 8^{*}10^{-4}$ см.

Описанная модель не связана со специфическими свойствами сорбентов и исходных растворов и поэтому для ее использования при других условиях требуется только корректный выбор соответствующих наборов параметров Γ, D, D^* и A.

В связи с возможными экспериментальными погрешностями построения кинетических кривых с использованием спектров РФА (до 20 % при низких концентрациях компонентов), предложенная модель, обобщающая большой массив экспериментальных данных, может быть использована в аналитических методиках определения компонентов методом рентгенофлуоресцентного анализа с использованием сорбционных накопительных сенсоров. В частности, модель полезна для построения калибровочных кривых для различных значений времени накопления (различных сечений кинетических кривых), а также для разработки соответствующих методик, построенных на регрессионном анализе.

Заключение

1. Предложена простая модель кинетики массопереноса для сорбционной микросистемы, используемой в рентгенофлуоресцентном анализаторе с предварительным концентрированием. Она основана на модификации известной модели для теплопроводности стержня с источником и стоком на разных концах.

2. С использованием модели проведен анализ экспериментальных данных по спектрам рентгеновской флуоресценции, найдены кинетические и равновесные параметры для сорбции меди и никеля на селективном сорбенте ДЭТАТА.

3. Модель может быть использована для создания аналитических методик высокочувствительного РФА- определения компонентов в растворах.

Список литературы

1.R. Kh. Khamizov, M. A. Kumakhov, S, V. Nikitina, V. A. Mikhin. New low detection limits for EDXRF analyses on the basis of polycapillary optics and chemical sensors. // SPI Proceed. 2005. V. 4953. P. 151 - 159.

2.Патент РФ № 2096353, опубл. 20.11.1997.

3.Патент РФ № 4411330, опубл. 14.08.2003.

4. Хамизов Р.Х., Груздева А.Н., Мясоедова Г.В., Кумахов М.А., Золотарев П.П. Химические сенсоры для анализа растворов на основе ионообменных и сорбционных материалов. // Сорбционные и хроматографические процессы, Воронеж, 2005, т. 5, вып. 4, с. 448 – 460.

5.Myasoedova G.V. POLYORGS as complexing sorbents for preconcentration of trace metals. // Fresenius Z.Anal.Cem. 1991. V. 341. № 10. P.586-591.

6.Золотов Ю.А., Цизин Г.И., Моросанова Е.И., Дмитриенко С.Г. Сорбционное концентрирование микрокомпонентов для целей химического анализа. // Успехи химии, 2005, т. 27, №1, с. 41 – 66.