

Влияние структуры фенола на межфазное натяжение в экстракционных системах гексан - хлороформ - водно-солевой раствор

Хорохордина Е.А., Фан Винь Тхинь, Рудаков О.Б.

Воронежский государственный архитектурно-строительный университет, Воронеж

Подолина Е.А.

Электростальский политехнический институт (филиал) Московского института стали и сплавов, Электросталь

Аннотация

Определенно межфазное натяжение в системах гексан – хлороформ — алкилфенол — водно-солевой раствор. Рассмотрено влияние природы алкилфенолов на характер изотерм межфазного натяжения и коэффициенты распределения в изученных экстракционных системах

Введение

Поверхностное натяжение — основная термодинамическая характеристика поверхностного слоя жидкости на границе с газовой фазой или другой жидкостью. Величина поверхностного натяжения входит во многие уравнения физической и коллоидной химии. Оно определяет величины капиллярного давления, давления насыщенного пара над искривлённой поверхностью жидкости, краевого угла смачивания в контакте жидкости с поверхностью твёрдого тела, адсорбции ПАВ, электрокапиллярного эффекта, и т.д.

Поверхностное натяжение является мерой некомпенсированности межмолекулярных сил в поверхностном слое. Для подвижных жидкостей она характеризует избыток свободной энергии в поверхностном слое по сравнению со свободной энергией в объёме. Величина σ определяется характером межмолекулярных сил, размером и геометрией молекул, их ориентацией в поверхностном слое, т.е. природой растворителя, его поверхностной активностью или поверхностной активностью находящихся в нём других веществ [1].

В случае поверхностного натяжения на границе жидкость – жидкость, наличие над слоем первой жидкости слоя другой, несмешивающейся с ней жидкости, приводит к понижению межфазного поверхностного натяжения, поскольку молекулы второй жидкости притягивают к себе молекулы первой и таким образом уменьшают действие некомпенсированных сил на поверхности первой жидкости. Понижение межфазного поверхностного натяжения, очевидно, тем значительнее, чем меньше различие в полярностях обеих жидкостей [2]. Жидкости, близкие по полярности, смешиваются друг с другом во всех отношениях, и поэтому поверхностное натяжение между ними равно нулю.

Если жидкости не смешиваются или ограниченно растворимы друг в друге, то межфазное натяжение, как правило, равно разности между двумя поверхностными натяжениями несмешивающихся жидкостей. Это так называемое правило Антонова [3]:

$$\sigma_{AB} = \sigma_B - \sigma_A \,,$$
 если $\sigma_{B\,>\,\sigma_A} \,.$

где σ_B — поверхностное натяжение жидкости B, σ_A — поверхностное натяжение слоя жидкости A (в нашем случае смеси гексан - хлороформ), σ_{AB} — межфазное поверхностное натяжение на границе раздела жидкость A - жидкость B.

Целью данной работы явилось изучение межфазного натяжения в экстракционных системах «бинарный органический растворитель — водно-солевой раствор» в присутствии фенолов различного строения для определения влияния наличия и структуры фенолов на этот параметр.

В качестве бинарного экстракта взяли систему гексан - хлороформ, которую часто применяют как подвижную фазу в жидкостной тонкослойной и высокоэффективной хроматографии фенолов. Остается не выясненной природа наблюдаемых синергетических эффектов при экстракции фенолов смешанными растворителями.

Теоретически и экспериментально обоснованные экстракционные бинарные составы, близкие к составам подвижных фаз в хроматографических методах, перспективны для осуществления пробоподготовки в хроматографическом анализе фенолов, содержащихся в водных, органических средах или твердых полимерных материалах.

Эксперимент

В качестве объектов исследования взяли фенол, 4-метил-2,6-ди-*трет*-бутилфенол (ионол), 2-*трет*-бутилфенол, *о*, *м*, *n*- крезолы, квалификации «х.ч.» («Мегск», Германия). Объемные соотношения бинарных смесей гексан – хлороформ варьировали от 0:1 до 1:0.

Экспериментальные значения поверхностного натяжения σ_A и σ_B , где σ_A - поверхностное натяжение смесей гексан - хлороформ, а σ_B - поверхностное натяжение водно-солевого раствора, были получены методом максимального давления в пузырьке воздуха на приборе Ребиндера [3]. Для этого находили константу ячейки к, которую рассчитывали по значениям максимального давления Δp_{cr} и поверхностного натяжения σ_{cr} для стандартных жидкостей:

$$\kappa = \sigma_{cr} / \Delta p_{cr}$$

Определив коэффициент κ для исследуемой жидкости, находили значение $\sigma_{\text{ж-r}} = \kappa \Delta p_{\text{макс}}$ Применение этого метода хорошо минимизирует ошибки, обусловленные изменением состава из-за испарения.

Определение межфазного натяжения между органической и водно-солевой фазой σ_{AB} осуществляли следующем образом: навеску фенола массой около 0,1 г взвешивали на аналитических весах с точностью $\pm 0{,}0002$ г, помещали в делительную воронку и добавляли 100 мл дистиллированной воды и в течение 15 минут встряхивали на вибросмесителе. Затем отбирали 10 мл водного раствора и добавляли сульфат аммония до насыщения; насыщенный водно-солевой раствор добавляли серной кислоты до рН 2. После растворения соли в полученный раствор добавляли 1 мл гексана, хлороформа или их смеси и в течение 30 мин перемешивали на магнитной мешалке. После расслоения органической и водносолевой фаз производили измерения σ_A и σ_B на приборе Ребиндера. Для этого исследуемую жидкость наливали в ячейку до уровня, при котором кончик капилляра погружается в нее, не более чем на 1 мм. Ячейку соединяли отводной трубкой с аспиратором и краном микроманометра. Устанавливали мениск в манометрической трубке против нулевой отметки. После чего открывали кран аспиратора. В установке создавалось разряжение, в результате чего манометрическая жидкость поднималась в трубке. Сформировавшийся на этот момент давление в системе снижалось, манометрическая жидкость опускалась, затем в результате образования нового пузырька она снова поднималась, что вызывало колебание

результите образования нового нузырыха она спова подпималасы, 110 вызывало колсоаты

уровня манометрической жидкости. Для уменьшения пульсации жидкости в измерительной трубке, добивались равномерного проскока пузырька, с интервалом 20-30 с. Время образования и отрыва пузырьков воздуха регулировали путём изменения скорости вытекания воды из аспиратора. Показание манометра регистрировали, если $\Delta p_{\text{макс}}$ в течение 2-3 мин не изменялись.

Результаты и их обсуждение

На рис. 1 приведены результаты измерений поверхностного и межфазного натяжения для системы, в которой отсутствует добавка фенола, а на рис. 2-4 даны измерения для систем с добавлением некоторых алкилфенолов. Из экспериментальных данных видно, что при отсутствии в системе фенольных добавок для межфазного натяжения характерен вогнутый вид изотерм $\sigma_{AB} = f(\varphi_2)$, добавление в систему того или иного фенола приводит к изменению характера изотерм, в частности, меняется знак отклонения от аддитивности и они приобретают вид выпуклых кривых.

количественного Для изотерм описания найденных использовали модифицированные биномиальные зависимости типа

$$\sigma_{12} = \sigma_1 + \alpha \sigma_1 \varphi_2 + (\sigma_2 - \alpha \sigma_1 - \sigma_1) \varphi_2^2 , \qquad (1)$$

где σ_{12} - σ_{AB} для бинарной смеси, σ_1 - σ_{AB} для системы не содержащей хлороформа, σ_2 - σ_{AB} для системы не содержащей гексан. Как показано ранее, уравнением (1) адекватно описываются изотермы поверхностного натяжения для многих бинарных смесей [4]. Можно предположить применимость этого уравнения и для разности поверхностных натяжений $\sigma_{AB} = \sigma_B - \sigma_A$

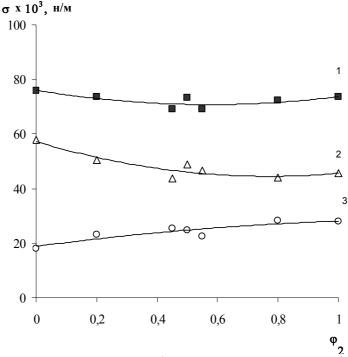


Рис. 1. Изотермы поверхностного и межфазного натяжения для двухфазной системы гексан – хлороформ — водно-солевой раствор: $1 - \sigma_B$, $2 - \sigma_{AB}$, $3 - \sigma_A$, φ_2 — объёмная доля хлороформа в системе гексан - хлороформ

Действительно, как следует из данных в табл. 1, уравнение (1) описывает экспериментальные кривые с хорошим коэффициентом корреляции R = 0,93-0,99.

Рассмотрим отклонения σ_{12} от $\sigma_{a\partial\partial}$, найденные по уравнениям

$$\sigma_{ao} = \sigma_2 \cdot \varphi_2 + \sigma_1 (1 - \varphi_2). \tag{2}$$

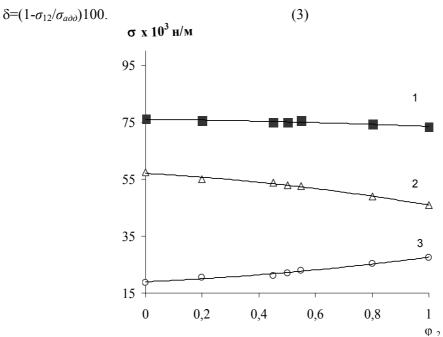


Рис. 2. Изотермы поверхностного и межфазного натяжения для системы гексан – хлороформ – фенол — водно-солевой раствор: $1 - \sigma_B$, $2 - \sigma_{AB}$, $3 - \sigma_A$

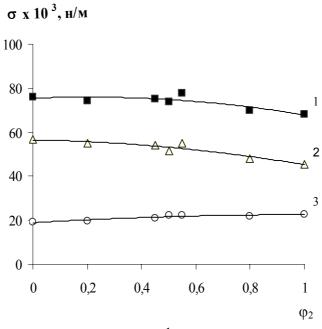


Рис. 3. Изотермы поверхностного и межфазного натяжения для системы гексан — хлороформ — ионол — водно-солевой раствор: $1-\sigma_B$, $2-\sigma_{AB}$, $3-\sigma_A$

Хорохордина и др. / Сорбционные и хроматографические процессы. 2008. Т.8. Вып.2

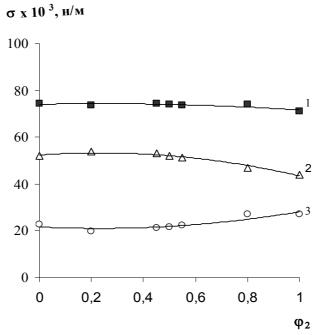


Рис. 4. Изотермы поверхностного и межфазного натяжения для системы гексан – хлороформ - o-крезол - водно-солевой раствор: 1 - σ_B , 2 - σ_{AB} , 3 - σ_A

Таблица 1. Значения эмпирических коэффициентов α в уравнение (1) для определения σ_{12} по изотермам межфазного натяжения в системах гексан — хлороформ — алкилфенол — водно-

солевой раствор, Т=298 К

Система	σ_1	σ_2	α	Коэффициент корреляции R
Без фенола	57,63	45,57	-0,595±0,063	0,9320
фенол	57,24	45,88	-0,112±0,014	0,9948
о-крезол	51,97	44,11	0,159±0,031	0,9764
м-крезол	47,66	47,99	0,099±0,019	0,7944
<i>n</i> -крезол	55,51	43,71	-0,080±0,025	0,9836
<i>o-трет-</i> бутилфенол	63,02	46,10	-0,152±0,030	0,9892
ионол	56,90	45,50	-0,126±0,026	0,9893

Таблица 2. Максимальное отклонение δ от аддитивности для межфазного натяжения σ_{AB} в системах гексан – хлороформ – алкилфенол – водно-солевой раствор при 298 К

енетемия тексин жлорофор	m asimisique i osi	водно солевон раствор п	iph 270 R
Алкилфенол	φ_2	δ	logP
Без фенола	0,53	10,8	-
фенол	0,53	-2,4	1,48
<i>о</i> -крезол	0,53	-8,4	1,92
м-крезол	0,50	-2,3	1,97
<i>n</i> -крезол	0,53	-3,7	1,97
<i>o-трет-</i> бутилфенол	0,53	-3,4	3,20
ионол	0,53	-2,1	5,43

Как видно из табл. 2 максимальные отклонения от аддитивности для σ_{AB} наблюдаются в области φ_2 =0,50-0,53 и составляют величину 2-8%. Ожидалось обнаружение зависимости величины отклонений δ от гидрофобности фенолов. К сожалению, между величиной δ и logP фенолов корреляции не выявлены. Это можно объяснить тем, что в опытах не удалось добиться одинаковой концентрации фенолов в изучаемых системах. В

тоже время величина б позволяет выявить наличие синергетического эффекта в смешанных растворителях.

Таблица 3. Коэффициенты распределения извлекаемых фенолов в системе водно-солевой раствор – бинарная смесь: n=5: P=0 95

partitop cimapi	oue thop of the chief it is, i						
TT	объемные соотношения гексан-хлороформ						
Извлекаемый фенол	10:0	8:2	5,5:4,5	5:5	4,5:5,5	2:8	0:10
фенол	D						
фенол	13,90	33,30	30,10	25,80	18,60	15,90	8,10
о-крезол	16,10	53,30	42,70	35,50	28,60	16,90	12,50
м-крезол	16,40	56,20	45,60	37,70	31,60	19,20	14,00
п-крезол	22,50	71,00	63,00	53,80	45,60	26,60	19,20
о- <i>трет</i> - бутилфенол	174	200	194	190	185	178	171
ионол	196	242	229	225	218	210	183

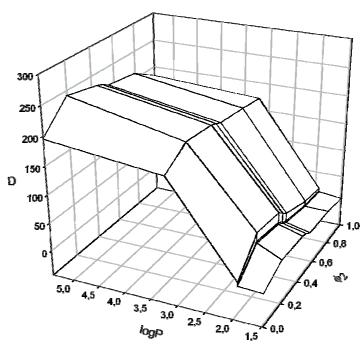


Рис. 5. Зависимость коэффициентов распределения (D) фенолов от объемной доли хлороформа φ_2 и параметра гидрофобности фенолов (log P)

На рис. 5 дана трехмерная диаграмма зависимости коэффициентов распределения фенолов D от объемной доли хлороформа и параметра гидрофобности фенолов logP, из которого следует, что с ростом log P, т. е. с увеличением гидрофобности фенолов коэффициент распределения D возрастает во всех использованных системах.

Что касается синергетического эффекта, то он наблюдается в диапазоне φ_2 =0,2-0,5 и затухает при $\varphi_2 > 0,5$. Зависимости $D = f(\varphi_2)$ носят сложный характер и не могут быть описаны биномиальными моделями. Для описания этих зависимостей использовали рациональную математическую модель [5]:

$$D_{12} = (D_1 + (D_2 (1 + A_2 + B_2) - D_1) \varphi_2 / (1 + A_2 \varphi_2 + B_2 \varphi_2^2), \tag{4}$$

$$D_{12} = \text{read-dynamical parameters denoted } A_2 + B_2 = 2 \text{MUMPHURE WE read-dynamical parameters}$$

где D_{12} – коэффициент распределения фенолов, A_2 и B_2 - эмпирические коэффициенты, значения которых приведены в табл. 4.

хлороформ – алкилфенол — водно-солевой раствор и					
Извлекаемый фенол	A_2	B_2	Коэффициент корреляции R		
фенол	-3,66	7,59	0,9698		
<i>о-</i> крезол	-4,19	10,21	0,9964		
<i>м</i> -крезол	-4,10	10,37	0,9972		
<i>n</i> -крезол	-3,90	8,87	0,9986		
<i>o-трет-</i> бутилфенол	25,48	6,71	0,9905		

3.55

0.9730

4.12

Таблица 4. Эмпирические коэффициенты A_2 и B_2 уравнения (4) для систем гексан - хлороформ – алкилфенол — волно-солевой раствор и

Следует отметить, что в отличие от поверхностного натяжения между органической фазой и воздухом, где при добавлении фенолов наблюдается уменьшение поверхностного натяжения, добавка фенолов в случае межфазного натяжения на границе гексан – хлороформ – водно-солевой раствор приводит к увеличению σ_{AB} . Это явление обладает синергизмом. Можно предположить, что найденное нелинейное (неаддитивное) изменение σ_{AB} для смешанных систем отчасти обуславливает аналогичное изменение коэффициентов межфазного распределения фенолов, в соответствии с принципом Ле Шателье, согласно которому равновесные процессы смещаются в сторону уменьшения внешнего воздействия, то есть отмечаемое неаддитивное увеличение σ_{AB} в близких к эквиобъемному составу системах сопровождается увеличением в них коэффициентов распределения фенолов D (см. табл. 3).

Таким образом, наблюдаемый синергетический эффект в системах гексан – хлороформ — алкилфенол — водно-солевой раствор, как и в системах гексан - кетон — алкилфенол - вода [5], может быть адекватно описан уравнением (4). Можно заключить, что абсолютное увеличение D определяется гидрофобностью (структурой) фенола, а максимум эффекта — составом смешанного растворителя.

Список литературы

ионол

- 1. Воюцкий С.С. Курс коллоидной химии. М.: Химия, 1976. 512 с.
- 2. Айвазов Б.В. Практикум по химии поверхностных явлений и адсорбции. М.: Высшая школа, 1973. 208 с.
- 3. Фролов Ю.Г., Гродский А.С., Назаров В.В. Лабораторные работы и задачи по коллоидной химии. М.: Химия, 1985. 216 с.
- 4. Рудаков О.Б., Беляев Д.С., Хорохордина Е.А., Подолина Е.А. Поверхностное натяжение бинарных подвижных фаз для жидкостной хроматографии. // Журнал физической химии, 2007. Т. 81, № 3. С. 438-441.
- 5. Рудаков О.Б., Подолина Е.А., Хорохордина Е.А., Харитонова Л.А. Влияние состава бинарных растворителей на экстракцию фенолов из водных сред // Журнал физической химии, 2007. Т.81, № 12. С.2278-2283.
