

Описание элюирующей способности многокомпонентной подвижной фазы в ВЭЖХ обобщенным параметром

Долгоносов А.М.

Институт геохимии и аналитической химии им. В.И.Вернадского РАН, Москва

Поступила в редакцию 28.12.2012 г.

Аннотация

Метод динамической карты хроматографической системы, разработанный для оптимизации ионной хроматографии [2,3], предполагает описание элюирующей способности многокомпонентной подвижной фазы одним обобщенным параметром — сила элюента, или элюирующая сила, и представляет компоненты разделяемой смеси полосами, характеризующими равновесное и кинетическое поведение компонентов. В рамках предложенной ранее модели удерживания для высокоэффективной жидкостной хроматографии (ВЭЖХ) [6] в работе рассматривается возможность обобщения результата, полученного для силы многокомпонентных элюентов в ионной хроматографии.

Ключевые слова: высокоэффективная жидкостная хроматография, моделирование равновесия, метод динамической карты хроматографической системы, параметр конкурентной сорбции.

A method of dynamic map of chromatographic system, that is developed for ion chromatography optimization [2,3], is based on the description of eluting capacity of multicomponent mobile phase by a single generalizing parameter — eluent or eluting strength. According to this method each component of a mixture under separation can be graphically represented as a band characterizing its equilibrium and kinetic behavior. In this paper in frame of the earlier suggested retention model for high performance liquid chromatography (HPLC) [6], a possibility to extend the result, obtained for eluting strength of multicomponent mobile phase in ion chromatography, is considered.

Keywords: high performance liquid chromatography, modeling of equilibrium, method of dynamic map of chromatographic system, competition sorption parameter

Введение

При хроматографическом анализе часто требуется выбирать условия разделения смесей, пользуясь различной зависимостью параметров удерживания компонентов от параметров хроматографической системы. Наглядное представление о поведении компонентов пробы при изменении параметров подвижной фазы (ПФ) дает карта хроматографического удерживания компонентов, на которую наносят их характеристики (см., например, [1]). В газовой хроматографии в качестве независимой переменной при построении карты удобно использовать температуру — единственный фактор, оперативно влияющий на удерживание аналитов. В ВЭЖХ

обычно в качестве независимой переменной при построении карты используют концентрацию элюирующей добавки (модификатора) в подвижной фазе. При использовании многокомпонентной $\Pi\Phi$ часто рассматривают несколько осей абсцисс — по числу модификаторов, однако пользы от получающейся сложной картины немного.

Для ионной хроматографии, которая (при всех своих особенностях) является по типу динамического процесса вариантом ВЭЖХ, удается найти *обобщенный параметр* для ПФ, называемый силой элюента [2,3]. Его введение обусловлено структурной особенностью закона равновесия ионного обмена, записанного в форме уравнения Никольского. Согласно этому уравнению существует инвариант, не зависящий от природы иона:

$$inv = \frac{K_{RA}}{\Gamma_A^{1/z_A}} = \frac{K_{RB}}{\Gamma_B^{1/z_B}} = ...; \quad K_{AB} = \frac{K_{RB}}{K_{RA}},$$
 (1)

где $K_{RA} \equiv K_A$ — константа обмена иона «A» на однозарядный ион сравнения (onophый ион) с индексом «R», который ниже для краткости опустим, Γ_A — коэффициент распределения иона, z_A — его заряд в атомных единицах. Соотношение (1) приводит к определению силы элюента ϕ , которое отражает возможность математически эквивалентной замены элюента сложного состава однокомпонентным раствором с концентрацией, пропорциональной безразмерной величине

$$\varphi = \frac{K_{i_n}}{\Gamma_{i_n}^{1/n}},\tag{2}$$

где K_{i_n} — константа ионного обмена (на опорный ион) n-заряженной формы i-го компонента пробы, $\Gamma_{i_n}^{1/n}$ — ее коэффициент распределения, взятый в степени 1/n в соответствии с уравнением Никольского. Условие электронейтральности для неподвижной фазы (НФ) приводит к уравнению для силы элюента, которое содержит только параметры компонентов элюента (в пренебрежении малыми вкладами ионов пробы):

$$a_0 = \sum_{j,n} n a_{j_n} = \sum_{j,n} n \gamma_n c_{j_n} K_{j_n}^n \varphi^{-n} , \qquad (3)$$

где c_{j_n} и a_{j_n} — концентрации n-заряженной формы j-го компонента элюента соответственно в ПФ и НФ, γ_n — коэффициент активности n-заряженной формы (функция ионной силы ПФ) [4], a_0 — емкость НФ. Таким образом, в ионной хроматографии сила элюента зависит от концентраций, зарядов, констант обмена и диссоциации компонентов элюента.

График характеристики удерживания Y(X) строят в логарифмах. По оси абсцисс откладывают логарифм силы элюента

$$X = \lg \phi , \qquad (4)$$

а по оси ординат — логарифм отношения коэффициентов распределения выбранного иона и опорного иона:

$$Y = \lg(t_i'/t_R') = \lg(\Gamma_i/\Gamma_R)$$
(5)

где $t_i' = t_i - t_0$ — исправленное, или смещенное время удерживания — разность между временем удерживания t_i и «мертвым временем» t_0 .

Долгоносов А.М. / Сорбционные и хроматографические процессы. 2013. Т. 13. Вып. 2

В распространенном случае «простого» компонента, когда аналит в рассматриваемых условиях характеризуется единственной ионной формой, зависимость Y(X) линейная. Логарифмируя (2), получим уравнение характеристики хроматографического удерживания простого компонента с зарядом z_i :

$$Y_i = z_i \lg K_i - (z_i - 1)X \tag{6}$$

Для общего случая полиморфного компонента, представленного набором ионных форм, зависимость Y(X) нелинейная и включает в себя константы реакций, приводящих к возникновению разных ионных форм этого компонента [2,3,5].

Y(X)Графики зависимости удобны ДЛЯ рассмотрения компонентов пробы в разных условиях. Их совместное расположение на одном поле называют картой хроматографического удерживания (КХУ) [1]. Возможности КХУ по выбору условий эксперимента проявляются при нанесении на нее характеристик сразу всех компонентов пробы. Из уравнения (6) следует, что характеристики ионов с различными зарядами пересекаются (рис.1), и при переходе через точку пересечения порядок элюирования соответствующих компонентов изменяется. Становится очевидным, что вблизи точек пересечения характеристик различие в удерживании соответствующих веществ мало, и при такой силе ПФ они вряд ли разделятся. Поэтому на карте стараются найти участки без пересечений (с существенно различными ординатами характеристик компонентов) соответствующие им значения силы элюента (например, на рис. 1 при X=0).

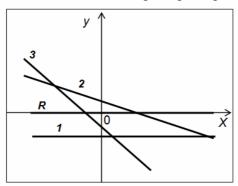


Рис. 1. Пример карты хроматографического удерживания с нанесенными на нее характеристиками типа (6) для опорного компонента ($\ll R$ ») и ионов с зарядами, соответствующими указанным цифрам.

Связь (3) силы элюента с концентрациями его компонентов является одним из условий для выбора состава $\Pi\Phi$.

Метод динамической карты хроматографической системы

Метод динамической карты хроматографической системы (ДКХС) [2,3] является развитием идеи КХУ для более полного учета степени близости хроматографического поведения компонентов пробы: вместо линии-характеристики компонента строится такая полоса компонента, что требуемое разделение компонентов отсутствует только в области пересечения их полос. На ДКХС каждый компонент пробы представлен полосой, средняя линия которой соответствует равновесному поведению компонента, т.е. совпадает с его линией на КХУ, а ширина полосы определяется кинетическими характеристиками и критерием разделения компонента (вывод соответствующих формул дан, например, в работе [5]).

На рис.2 приведена динамическая карта для некоторой хроматографической системы; каждая из полос на ней соответствует одному из исследуемых компонентов пробы, места перекрытия полос соответствуют элюентам, применение которых не дает разделения.

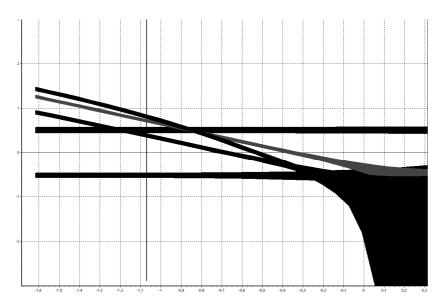


Рис. 2. Динамическая карта заданной хроматографической системы. Ось ординат Y соответствует (5). На оси абсцисс отложен логарифм силы элюента X (4). Показано сечение карты X = const для изократического режима с требуемым разделением компонентов пробы

Для компонентов с сопоставимыми концентрациями степень разделения R_{ik} с точностью до численной константы, близкой к 1, определяется как

$$R_{ik} = \frac{\left|t_i' - t_k'\right|}{\tau_i + \tau_k} , \qquad (7)$$

где τ_i — ширина пика на середине его высоты. Для осуществления требуемого разделения необходимо, чтобы минимальная степень разделения i-го компонента со своими соседями была бы не меньше задаваемой величины критерия разрешения пика R_i :

$$R_i \le \min_k R_{ik} \tag{8}$$

Зоны пересечения полос на ДКХС соответствуют пикам на хроматограмме, не разделенным в необходимой степени. При выборе условий разделения пробы на ДКХС определяются разрешенные интервалы — интервалы на оси абсцисс, на которых нет пересечений полос, т.е. выполняется (8). Разные разрешенные интервалы соответствуют разным последовательностям выхода компонентов. Удобство (и преимущество) ДКХС при оптимизации заключается в отсутствии сложных процедур, так как минимальному времени анализа для выбранной последовательности выхода компонентов соответствует правая точка разрешенного интервала.

Соотношения и обозначения модели ВЭЖХ

При соблюдении некоторых простых ограничений понятие силы элюента можно ввести и в общей теории ВЭЖХ.

В работе [6] была найдена связь показателя удерживания аналита ln y с характеристиками аналита (индекс i), модификатора (индекс j) и его долями: V - в $\Pi\Phi$ и θ - в $H\Phi$. Для случая однокомпонентного элюента эта связь (уточненная по сравнению с [6] на случай к~1) выражается функцией:

$$\ln y_{i(j)} = \frac{\alpha_i - 1 - \kappa_j^{-1} \ln \alpha_i}{1 - \kappa_j^{-1}} \theta - \frac{\alpha_i - 1 - \ln \alpha_i}{1 - \kappa_j^{-1}} \nu - \frac{n_i}{n_j} \left(\ln \kappa_j - \ln \frac{\theta}{\nu} \right), \tag{9}$$

где индекс в скобке говорит о парциальной величине, относящейся к системе с одним модификатором; использованы следующие обозначения:

$$y_i = \Gamma_i / \Gamma_{0i}$$
,

 Γ_i , Γ_{0i} — коэффициенты распределения компонента при текущем и нулевом содержании модификатора в $\Pi\Phi$, соответственно; κ_j — константа Генри сорбции модификатора (нормированная), полученная как предел отношения его доли в НФ к доле в ПФ при стремлении последней к нулю, связанная с обыкновенной константой

Генри определением:
$$\Gamma_{0j} = \kappa_j \frac{a_{1j}}{c_{1j}}$$
, где a_{1j} - емкость НФ по модификатору, c_{1j} -

концентрация чистого модификатора; $\tilde{\alpha}_i$ — параметр (константа) конкурентной сорбции і-го компонента, определенный относительно некоторого произвольно взятого компонента (например, опорного компонента), при замене которого на j-й компонент, параметр подвергается преобразованию:

$$\alpha_i^{1/n_i} = \widetilde{\alpha}_i^{1/n_i} / \widetilde{\alpha}_j^{1/n_j} ; \qquad (10)$$

 n_i — стехиометрический показатель компонента, пропорциональный молекулярной площадке и, в конечном счете, обобщенному заряду Q_i молекулы [7]; эта величина для компонента, взятого в качестве опорного, принимается за единицу:

$$n_i = Q_i/Q_R; \ n_R \equiv 1 \tag{11}$$

Ниже, в таблице, приведены численные значения параметров уравнения (9) для некоторых веществ, применяемых в качестве растворителей и модификаторов для обращенно-фазового варианта жидкостной хроматографии (ОФЖХ), которые были рассчитаны в работе [8].

Таблица. Обобщенные заряды Q, показатели n, конкурентные отношения к метанолу а и нормированные константы Генри к для некоторых веществ, применяемых в составе ПФ для ОФЖХ

Молекула	Масса, т, Да	Q, ат.ед.	n	α	κ
Вода	18	2.83	0.505	<<1*	1
Метанол ('R')	32	5.62	1	1	7.85
Ацетонитрил	41	7.87	1.41	0.769	34.1
Тетрагидрофуран	72	11.51	2.06	0.591	145

^{*} Величина, не определяемая в рамках рассматриваемой модели

Сила элюента в ВЭЖХ

Переход к многокомпонентному элюенту осуществляется путем усреднения энергии сорбции аналита, что выражается в виде правила сумм для показателей удерживания ln y:

$$\theta \ln y_i = \sum_j \theta_j \ln y_{i(j)}, \qquad (12)$$

где $\theta = \sum \theta_j$. Прямое применение (12) неудобно, потому что получается сложное выражение с большим числом независимых переменных, которыми являются концентрации компонентов элюента [1,9].

Существует возможность введения силы элюента для важного случая эффективного элюента, когда $(1-\alpha)^2 << 1$, и величина $1-\alpha + \ln \alpha \approx -\frac{1}{2}(1-\alpha)^2$ становится малой (например, данные таблицы, приведенные по отношению к метанолу, вполне удовлетворяют этому условию). Тогда удобна замена $\alpha - 1 \approx \ln \alpha$ и верна следующая аппроксимация уравнения (9):

$$\ln y_{i(j)} \approx \theta \ln \alpha_i - \frac{n_i}{n_j} \left(\ln \kappa_j - \ln \frac{\theta}{\nu} \right)$$
 (13)

Отметим, что на концах интервала изменения доли модификатора, когда мала разность $\theta - v$, приближение (13) выполняется с еще большей точностью.

Полученное уравнение обобщается на случай многокомпонентного элюента. Для разделения индексов применим выражение (10) в виде $\ln \alpha_i = \ln \widetilde{\alpha}_i - \frac{n_i}{n_j} \ln \widetilde{\alpha}_j$:

$$\frac{1}{n_i} \left(\theta_x \ln \tilde{\alpha}_i - \ln y_{i(j)} \right) = \frac{1}{n_j} \left(\theta_x \ln \tilde{\alpha}_j - \ln \frac{\theta_j}{\kappa_j \nu_j} \right)$$
(14)

ет неопределенность, возникшую при восстановлении индексов у долей модификатора: то ли $\theta_x = \theta_j$, то ли $\theta_x = \theta$. Ответ на этот вопрос дает прием с представлением модификатора *однокомпонентного* элюента в виде множества модификаторов одной природы с одинаковыми долями в элюенте: $\theta = \sum \theta_j = b\theta_j, v = \sum v_j = bv_j$. Подстановка этих соотношений в (12) дает $\ln y_i = \ln y_{i(j)}$; подстановка же в (14) при $\theta_x = \theta_j = \theta/b$ дает неустранимое присутствие параметра b, что лишено смысла, и только при $\theta_x = \theta$ уравнение (14) не содержит этого параметра. U имак, в уравнении (14) вместо θ_x надо писать θ .

Так как правая часть (14) не зависит от параметров с индексом i, то сумма левой части по компонентам элюента должна дать инвариант, не связанный с индексами. Умножим обе части уравнения (14) на θ_j и возьмем сумму по j. Обозначим сумму в левой части как $\theta \ln \phi'$ и запишем в соответствии с (12):

$$\frac{1}{n_i} \left(\theta^2 \ln \widetilde{\alpha}_i - \theta \ln y_i \right) = \theta \ln \varphi' \rightarrow \frac{1}{n_i} \left(\theta \ln \widetilde{\alpha}_i - \ln y_i \right) = \ln \varphi'$$
(15)

где y_i — искомый коэффициент относительного удерживания аналита в системе с многокомпонентным элюентом,

$$\varphi' = A\varphi \tag{16}$$

— сила элюента, определяемая с точностью до постоянного множителя A = const аналогично силе элюента в ИХ. Ее логарифм согласно (14) равен сумме по компонентам элюента:

$$\ln \varphi' = \sum \frac{\theta_j}{n_j} \ln \tilde{\alpha}_j - \frac{1}{\theta} \sum \frac{\theta_j}{n_j} \ln \frac{\theta_j}{\kappa_j \nu_j}$$
(17)

Заметим, что по определению для однокомпонентного элюента

$$y_j = \frac{\theta_j}{\kappa_j \nu_j} \tag{18}$$

В многокомпонентной ПФ величина y_j определяется индивидуальной изотермой только в случае отсутствия конкуренции между компонентами элюента, например, при их малых содержаниях, когда $\theta_j \approx \kappa_j v_j <<1$ и $\ln y_j \cong 0$. В таком случае $\theta \approx \sum \kappa_j v_j$ (растворитель O в сумму не входит: $j \neq O$), и для силы элюента получим:

$$\ln \varphi' \approx \sum \frac{\ln \widetilde{\alpha}_j}{n_j} \kappa_j V_j, \quad j \neq 0$$
 (19)

Подстановка этих оценок в (15) дает простое выражение для случая малых заполнений: $\ln y_i \approx \sum_i \kappa_j \nu_j \ln \alpha_i$, что для $\ln \alpha \approx \alpha - 1$ и $n \equiv 1$ приводится к

выражению:
$$y_i \approx \ln y_i + 1 \approx \sum \kappa_j v_j (\alpha_i - 1) + 1 = 1 - \theta + \widetilde{\alpha}_i \beta$$
, где $\beta = \sum \frac{\kappa_j v_j}{\widetilde{\alpha}_j}$.

Таким образом, для случая низкого заполнения сила элюента определяется по (19), что может быть представлено в виде линейной комбинации модификаторов, подобно схеме из [1], в которой используются параметры растворимости Гильдебранда. Однако для случаев высокого заполнения модификатором межфазной поверхности — основной области, характерной для ВЭЖХ — это не так.

Представим уравнение (15) в виде:

$$\frac{\Gamma_i}{\Gamma_{0i}} = \frac{\tilde{\alpha}_i^{\theta}}{(\boldsymbol{\varphi}')^{n_i}} \tag{20}$$

Отсюда найдем значение силы $\Pi\Phi$, соответствующее нулевой концентрации модификаторов ($\theta \to 0$, $\Gamma_i \to \Gamma_{0i}$): $\phi' = 1$ — а для используемого на КХУ логарифма этой величины — $X = \ln \phi' = 0$.

Случай конкуренции компонентов ПФ при больших заполнениях сведем к предельному, $\theta \equiv 1$, исключая из рассмотрения сравнительно короткий интервал роста трудно определяемой величины θ . Уравнение (20) при $\theta \equiv 1$ принимает вид, эквивалентный уравнению ИХ (2):

$$\Gamma_i^{1/n_i} = \frac{K_i}{\varphi} = \frac{AK_i}{\varphi'} \tag{21}$$

где $K_i = A^{-1} (\tilde{\alpha}_i \Gamma_{0i})^{1/n_i}$ — константа обмена i-го компонента на опорный компонент, которая для опорного компонента равна 1 по определению. Записывая $K_R = A^{-1} (\tilde{\alpha}_R \Gamma_{0R})^{1/n_R} \equiv 1$ и учитывая, что $n_R = 1$, $\tilde{\alpha}_R = 1$, получим

$$A = \Gamma_{0R} \quad \text{if} \quad K_i = \left(\tilde{\alpha}_i \Gamma_{0i}\right)^{1/n_i} / \Gamma_{0R}$$
 (22)

Как было показано выше, построение КХУ производится по зависимостям типа (6), выводимым из уравнений для компонентов (2), (21). Простые компоненты, имеющие единственную форму с некоторым значением n_i , характеризуются прямой с соответствующим наклоном, как на рис.1. Для полиморфных компонентов, участвующих в протолизе и поэтому зависящих от рН элюента, характеристики нелинейны, однако их расчет не представляет трудности (см., например, [2,3,5]).

Уравнение (15) должно быть справедливо для любых веществ, в том числе и для компонентов элюента:

$$\frac{1}{n_i}(\theta \ln \tilde{\alpha}_i - \ln y_i) = \ln \phi' = \frac{1}{n_j}(\theta \ln \tilde{\alpha}_j - \ln y_j)$$
(23)

Рассмотрим правые уравнения (23). Разрешая их относительно суммарного заполнения Н Φ , с учетом (18) найдем уравнение для ϕ' :

$$\theta = \sum (\varphi')^{-n_j} \widetilde{\alpha}_j^{\theta} \kappa_j \nu_j .$$

В предельном случае $\theta = 1$ получим уравнение:

$$\sum (\mathbf{\phi}')^{-n_j} \widetilde{\alpha}_j \kappa_j \mathbf{v}_j = 1 \tag{24}$$

Решением этого уравнения должна быть величина $\phi' >> 1$, так как в противном случае, $\phi' \sim 1$, доли модификаторов в $\Pi\Phi$ малы и $\theta << 1$.

Для примера, рассмотрим $\Pi\Phi$ с равными долями ($v_j=1/4$) компонентов, представленных в таблице. Элюирующая сила такой $\Pi\Phi$ относительно метанола как опорного компонента согласно (24) равна 7.41, что в пересчете на $\Pi\Phi$ с одним модификатором соответствует 94%-ному водному раствору метанола, 64%-ному раствору ацетонитрила или 72%-ному раствору тетрагидрофурана. По нашей оценке, возможный вклад воды в полученные величины составляет не более 1-2%.

Сравнив уравнения (24) и (3) (в виде $a_0 = \sum \phi^{-z_j} z_j K_j^{z_j} c_j$), получим, что расчет силы эффективных в ВЭЖХ многокомпонентных элюентов возможен с применением аппарата ионной хроматографии при следующих подстановках-аналогиях:

$$c_j \rightarrow v_j c_{1j}, \quad z_j \rightarrow n_j, \quad a_0 \rightarrow a_{1j} n_j = const, \quad K_j \rightarrow \Gamma_{0R}^{-1} (\widetilde{\alpha}_j \Gamma_{0j})^{1/n_j}$$
 (25)

Отметим, что для хроматографии в смешанной области, использующей одновременно механизмы ионного обмена и адсорбции, элюирующая способность $\Pi\Phi$ характеризуется *двумя* независимыми составляющими: *ионообменной силой* Φ_{ex} элюента (определяемой из уравнения (3)) и *неспецифической силой* Φ'_{ns} элюента (определяемой из уравнения (24)). Для суммарного коэффициента распределения простого аналита получим

$$\Gamma_i = \frac{K_i^{z_i}}{\varphi_{ax}^{z_i}} + \frac{\tilde{\alpha}_i \Gamma_{0i}}{(\varphi_{ns}')^{n_i}}$$
(26)

и следствие (26) для опорного компонента: $\Gamma_R = \frac{1}{\phi_{ex}} + \frac{\Gamma_{0R}}{\phi'_{ns}}$. В этом общем случае

КХУ строится в виде трехмерного графика с нанесенными на него поверхностями аналитов, соответствующими функции $\frac{\Gamma_i}{\Gamma_R} (\phi_{ex}, \phi'_{ns})$.

Список литературы

1.Схунмакерс П., Оптимизация селективности в хроматографии /Пер. с англ. Под ред. В.А. Даванкова. М., Мир. 1989. 399 с.

2.Долгоносов А.М., Ипполитова О.Д. // Журн. аналит. химии, 1993. Т.48, №8. C.1361-1372.

- 3.Долгоносов А.М., Сенявин М.М., Волощик И.Н. Ионный обмен и ионная хроматография. М., Наука. 1993. 222 с.
 - 4.Колотилина Н.К., Долгоносов А.М. // Журн. неорг. химии, 1999. Т.44, №5. С. 698.
- 5.Долгоносов А.М., Прудковский А.Г., Колотилина Н.К. Прямая и обратная задачи моделирования градиентной ионной хроматографии // Журнал аналитической химии. 2007. Т.62, №11. С.1162.
- 6.Долгоносов А.М. Характеристики адсорбции, конкурентной сорбции и сольватации для описания удерживания в жидкостной хроматографии. І. Модель системы с однокомпонентным элюентом // Сорбционные и хроматографические процессы. 2011. Т.11, вып. 4. С.435.
- 7.Долгоносов А.М. Модель неоднородного электронного газа и теория обобщенных зарядов для описания межатомных сил и адсорбции. М., Книжный дом ЛИБРОКОМ. 2009. 176 с.
- 8.Долгоносов А.М. Неспецифическая селективность в проблеме моделирования высокоэффективной хроматографии. М., КРАСАНД. 2012 (в печати).
- 9.Snyder L.R.; Poppe H. Mechanism of Solute Retention in Liquid-Solid Chromatography and the Role of the Mobile Phase in Affecting Separation. Competition *versus* "Sorption" // J. Chromatogr. 1980. V.184. P. 363.

Долгоносов Анатолий Михайлович — д.х.н., вед. научный сотрудник, лаб. сорбционных методов, ГЕОХИ РАН, проф. Университета «Дубна», Москва

Dolgonosov Anatoly M. Dr. Chem., Lead. sci., Lab. of sorption methods, GEOKHI RAS; Prof. of 'Dubna' University, amdolgo@mail.ru